Design Optimization of Dynamically Coupled Actuated Butterfly Valves Subject to a Sudden Contraction
نویسندگان
چکیده
In this effort, we present novel nonlinear modeling of two solenoid actuated butterfly valves subject to a sudden contraction and then develop an optimal configuration in the presence of highly coupled nonlinear dynamics. The valves are used in the so-called smart systems employed in a wide range of applications including bioengineering, medicine, and engineering fields. Typically, thousands of the actuated valves operate together to regulate the amount of flow and also to avoid probable catastrophic disasters which have been observed in practice. We focus on minimizing the amount of energy used in the system as one of the most critical design criteria to yield an efficient operation. We optimize the actuation subsystems interacting with the highly nonlinear flow loads in order to minimize the amount of energy consumed. The contribution of this work is the inclusion of coupled nonlinearities of electromechanical valve systems to optimize the actuation units. Stochastic, heuristic, and gradient based algorithms are utilized in seeking the optimal design of two sets. The results indicate that substantial amount of energy can be saved by an intelligent design that helps select parameters carefully and also uses flow torques to augment the closing efforts. [DOI: 10.1115/1.4032215]
منابع مشابه
Parametric Study of Flow Characteristics of Butterfly Valve using CFD
Butterfly valve is a flow control device, which is used to regulate the fluid flowing through a piping system. Analysis and optimization are of special importance in the design and usage of butterfly valves. A proper selection of a Butterfly valve would require the knowledge of its characteristics and robustness. Normally this information used to be obtained from experimental tests. However the...
متن کاملThe use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation
In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...
متن کاملShape Optimization of an abrupt contraction using numerical streamlining
This research was conducted to find a reliable technique to shape an abrupt contraction for minimizing the energy loss. The method may find broader applications in design of variety of transitional cross-sections in hydraulic structures. The streamlines in a 2-D contraction were calculated through solving the potential flow equations in rectangular and curvilinear coordinates. The natural cubic...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملComparison the Sensitivity Analysis and Conjugate Gradient algorithms for Optimization of Opening and Closing Angles of Valves to Reduce Fuel Consumption in XU7/L3 Engine
In this study it has been tried, to compare results and convergence rate of sensitivity analysis and conjugate gradient algorithms to reduce fuel consumption and increasing engine performance by optimizing the timing of opening and closing valves in XU7/L3 engine. In this study, considering the strength and accuracy of simulation GT-POWER software in researches on the internal combustion engine...
متن کامل